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Abstract
By using the concept of concurrence, the entanglement of periodic anisotropic
XY chains in a transverse field is studied numerically. It is found that
the derivatives ∂λC(1) of nearest-neighbour concurrence diverge at quantum
critical points. By proper scaling, we found that all the derivatives ∂λC(1) for
periodic XY chains in the vicinity of quantum critical points have the same
behaviours as that of a uniform chain.

PACS numbers: 03.65.Ud, 02.30.Ik, 05.50.+q

1. Introduction

Quantum entanglement is the most remarkable trait of quantum systems and cannot be
accounted for classically. The early study of entanglement is only focused on the
foundations of quantum mechanics [1]. Recently, due to its potential applications in quantum
communications, quantum cryptography, quantum computer and quantum information [2],
entanglement has been studied extensively. One of the most important progresses is the
quantitative measures of entanglement for the mixed state by using the entanglement of
formation [3, 4]. For the special case of two spin- 1

2 systems, the entanglement of formation is
given by the concurrence C [5, 6].

On the other hand, there has been much interest in the quantum phase transition recently
[7]. Usually, the quantum phase transitions are associated with the changes of the ground-state
wavefunction. Therefore, it is natural to see if there are changes in the entanglement at the
quantum phase transition point. Recently, there were some works [8–11] on the relationship
between the entanglement and the quantum phase transition of the spin chains. By using
the concurrence, Osterloh et al [9] found that there is a universal scaling behaviour for the
derivatives of the entanglement of the uniform anisotropic XY chain in the vicinity of the
quantum phase transition. The von Neumann entropy of a large block of neighbouring spins
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and its singularity at the quantum phase transition point have been studied for XXZ [10, 11]
and XY spin chains [10, 12].

Recently, we studied the quantum phase transitions of periodic and quasiperiodic
anisotropic XY chains in a transverse field and found that there are more than one quantum
phase transition point (QPTP) on some parameter regions for periodic and quasiperiodic
chains, and the number of QPTPs is dependent on the parameters and the structure of systems,
which is quite different from those of the quantum Ising chain in a transverse field and the
uniform anisotropic XY chain without transverse field [13]. In this paper, we shall study
the behaviour of the entanglement in the vicinity of quantum phase transition of periodic
anisotropic XY model by using the concept of concurrence.

The paper is organized as follows. In section 2, we introduce the formula and method
with which we can study the entanglement of the periodic anisotropic XY chain. In section 3,
we discuss the finite-size effect and boundary condition for the spin chain. In section 4, we
study the behaviour of the entanglement of the periodic chains by numerical results. We
present some discussions and conclusions in section 5.

2. Formula and method

The Hamiltonian of the general anisotropic XY model in a transverse field is given by

H = −
N∑

i=1

{
λi

2

[
(1 + γ )σ x

i σ x
i+1 + (1 − γ )σ

y

i σ
y

i+1

]
+ σ z

i

}
, (1)

where λi are the nearest-neighbour interactions, σα
i the αth Pauli matrix (α = x, y or z) on site

i, N the number of sites, and γ the degree of anisotropy. For λi = λ, the model is a uniform
quantum spin chain. For the model of a period-two quantum spin chain, λ2i = λ, λ2i+1 = βλ.

By use of the famous Jordan–Wigner transformation, the Hamiltonian can be written as

H = −
N∑

j=1

{
−λj

(
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) − 2c+
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)
, Sz
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2
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i .

With neglect of the last term, the Hamiltonian equation (2) can be written as

H = −
N∑

i,j=1

[
c+
i Aij cj +

1

2

(
c+
i Bij c

+
j + h.c.

)]
+ N, (3)

where Aij = −λiδj,i+1 − λjδj,i−1 − 2δij , Bij = −λiγ δj,i+1 + λjγ δj,i−1;A1N = −λN =
AN1, B1N = −λNγ = −BN1. The quadratic Hamiltonian equation (2) may be diagonalized
by Bogliubov transformation,

ηk = −
N∑

i=1

(
pkici + qkic

+
i

)
, (4)

η+
k = −

N∑
i=1

(
pkic

+
i + qkici

)
, (5)
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where k = −N
2 ,−N

2 + 1, . . . , N
2 − 1; and pki and qki can be chosen to be real. By requiring

that the operator ηk obey fermionic anticommutation relations, and that the Hamiltonian
equation (2) be manifestly diagonal, the following two coupled matrix equations must hold

(A − B)
−→
φk = �k

−→
ψk (6)

(A + B)
−→
ψk = �k

−→
φk , (7)

where
−→
φk ,

−→
ψk are two column vectors, and are given by

−→
φk = pki + qki (8)
−→
ψk = pki − qki . (9)

Then the Hamiltonian takes the form

H =
∑

k

�k

(
η+

k ηk − 1

2

)
. (10)

Following the study of the uniform anisotropic XY chain [9], we use the concurrence as
the measure of the entanglement of two spins in the chain. The concurrence of two spins at
sites i and j is defined as

C = max{0, r1 − r2 − r3 − r4}. (11)

Here, rα are the square roots of the eigenvalues of the product matrix R = ρij ρ̃ij in descending
order; the spin flipped matrix ρ̃ij is defined as ρ̃ij = (σ y ⊗ σy)ρ∗

ij (σ
y ⊗ σy). The ρij is the

reduced density matrix and can be written as following operator expansion form [8]

ρij = 1

4

3∑
α,β=0

pαβσα
i ⊗ σ

β

j . (12)

The coefficients are determined by the relations

pαβ = tr
(
σα

i σ
β

j ρij

) = 〈
σα

i σ
β

j

〉
(13)

where σ 0
i = I is the unit matrix of 2 × 2.

Because of the reflection symmetry, and the global phase flip symmetry, and
the Hamiltonian being real, the only nonzero coefficients in equation (12) are
p00, p03, p30, p11, p22, p33. Furthermore, p00 = 1, because the density matrix must have
trace unity [8]. And the two-point correlation functions are given by [14]

〈
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j
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where Gij = −∑
k ψkiφkj .
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Figure 1. The NNC as a function of λ for the spin chain with γ = 1 and N = 40. There is a
gap for the concurrence at quantum phase transition point λ = λc = 1. The inset is the gap as a
function of number of spins. When N → ∞, the gap tends to N−1.

3. Finite-size effect and boundary terms

For the uniform anisotropic XY chain, Osterloh et al [9] found that the derivatives of nearest-
neighbour concurrence (NNC) have logarithmic singularities at the QPTPs. But their numerical
results are obtained only for chains with odd spins. For the even-spin chains, by using the
same method as that of paper [9], we find that there is a gap in the curve of NNC versus λ at
quantum phase transition point λc (see figure 1). When the number of spins goes to infinite,
the gap tends to zero as �C ∼ N−1 (see the inset of figure 1). Therefore, we can conclude
that the gap is caused by the finite-size effect.

The reason for the difference of NNC between the odd and even cases is neglect of
the last term of equation (2) in solving the eigenvalues and eigenvectors of the Hamiltonian.
The term is proportional to exp(iπ�)+1 and only depends on the boundary spins, which has the
effect of making changes of the order 1/N in k, φk and ψk , all of which are negligible in the
calculation of real physical quantities for large system. But the entanglement is a property
of ground-state wavefunction and is sensitive to the boundary terms, therefore the last term
cannot be neglected. The term depends on the evenness or oddness of �, i.e., if � = odd,
the term is equal to zero; if � = even, then exp(iπ�) + 1 = 2. From the definition of �,
we can assume that � has the same evenness or oddness as that of the size of the spin chain.
Consequently when the size of the spin chain is even, the � is even, and then the term cannot
be neglected for finite-size chain. For even-spin chain the Hamiltonian must be rewritten and
the elements of matrix A and B in equation (3) are changed as

A′
ij = Aij , B ′

ij = Bij ,

A′
1N = −A1N = λN = A′

N1, B ′
1N = −B1N = −λNγ = −B ′

N1.
(18)

That is, the boundary term is anti-periodic.
In order to test our assumption, we study the NNC of the three-spin and four-spin

cases. For these systems, we can obtain the concurrence by solving the Hamiltonian directly.
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Figure 2. The NNC of three-spin and four-spin chains. The figure on left-hand side is a three-
spin case, and the figure on right-hand side is a four-spin case. The results by solving the
Hamiltonian directly correspond to the crosses. The circles correspond to the results by Jordan–
Wigner transformation, in which we use periodic boundary terms for the three-spin case and
anti-periodic boundary terms for the four-spin case.

Figure 3. The derivative of NNC ∂λC(1) as a function of λ for the uniform chain with the anti-
periodic boundary terms. The curves correspond to different lattice sizes N = 10, 40, 100, 250,
400, . . . , respectively. On increasing the system size, the minimum changes and tends as N−1.793 35

(left inset) towards the critical point λc = 1. The right inset shows the behaviour of NNC C(1)

itself for N = 100. The maximum that occurs below λc is not related to the critical point, where
γ = 0.9.

The results are the same with those obtaining by solving equation (3) with (anti)periodic
boundary for (four-) three-spin system (see figure 2).

Furthermore, we calculate the NNC of the even-spin chains and found that they are
the same with the results of the foregone odd-spin chains obtained by Osterloh et al [9]
(see figure 3). In this figure, we will see that the gap disappears at the critical point, and the
minimum of ∂λC(1) behaves as the odd-spin chains. And the finite-size scaling is the same
with the results of odd-spin chains.

Therefore we should use the anti-periodic boundary terms (18) to study the even-spin
chains in the following study.
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Figure 4. The NNC of the period-two XY chain. In this case we choose N = 120, and from
the upper curve down to the lower curve on the right, the curves correspond to γ = 0.2, 0.3, 0.4,
respectively. For β = 0.5, γc = 1

3 .

4. Entanglement of the periodic spin chains

4.1. The period-two chains

For the periodic-two anisotropic XY chain in a transverse field, λ2i = λ, λ2i+1 = βλ, it was
found [13] that there exists a critical value γc = 1−β

1+β
, which is a function of β. For any γ

(0 < γ < 1), there is a QPTP, and for γ < γc there is an additional QPTP. The QPTPs are

λC1 = 2√
(1 + β)2 − γ 2(1 − β)2

, for 0 < γ, β < 1,

λC2 = 2√
(1 − β)2 − γ 2(1 + β)2

, for γ <
1 − β

1 + β
.

This is due to the competition of periodicity and anisotropy. The additional QPTP is the
result of two-spin clusters. In the numerical study, for finite-size system the additional
QPTP disappears for odd-spin chains. Therefore, we only study even-spin period-two
chains. For the period-two chain, the σ2i and σ2i+1 are not equivalent, therefore, the nearest-
neighbour concurrence C2i,2i+1 and C2i+1,2i+2 are different. But, they have the similar
behaviours with changing of the parameters λ and γ . So that, we use the average
concurrence C = 1

2 (C2i,2i+1 + C2i+1,2i+2) to study the entanglement. Similarly, we use
C = 1

3 (C3i,3i+1 + C3i+1,3i+2 + C3i+2,3i+3) to study the entanglement of the period-three chains.
Figure 4 gives the numerical results of the concurrence for different γ at β = 0.5. Figure 5
shows the derivative of the concurrence at the vicinity of the QPTPs. From figure 5 we can
clearly see that for any γ , there is one QPTP λC1 (see the figure on the left-hand side), and for
γ = 0.2, 0.3 < γC (γC = 1

3 for β = 0.5) there is an additional QPTP while there is none for
γ = 0.4 (see the figure on the right-hand side).

In order to study the behaviour of NNC at the vicinity of QPTPs, we study the derivatives
of NNC for different sizes, and found that they have the same behaviour as that of the uniform
case. Figure 6 shows the curve of the derivative of the NNC in the neighbourhood of λC1 the
critical point for even-spin chains with a different size. From the figure, we clearly see that
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Figure 5. The derivative of the NNC of the period-two XY chain. In this case we choose N = 120,
and γ = 0.2, 0.3, 0.4, respectively. The left- and right-hand side figures correspond to the vicinity
of λC1 and λC2 , respectively.

Figure 6. The derivative of the NNC at the vicinity of λC1 . On increasing the system size,
the position of the minimum λm changes and tends as N−1.720 29, where N = 60, 120, 240, 480,
respectively.

the derivative exhibits the same behaviour as that of the uniform chain at the quantum critical
point. The minimum λm of the curve changes as the increasing system size (see the inset of
figure 6), and tends as

λm − λC1 ∼ Nα,

where α depends on γ , and α = −1.72 for γ = 0.2. The value ∂λC(1) at the first point λm

logarithmically diverges with increasing system size as

∂λC(1)|λm = −1.24509 ln N + const,

which can clearly be shown in the inset of figure 7. By proper s scaling [15], it is possible
to make all the data of the derivative of NNC for different N collapse approximately onto a
single curve with critical exponent ν = 1 (see figure 7 and its caption). For the additional
QPTP λC2 we also use the same method to the NNC and its derivatives. We find that the NNC
at the additional QPTP has the similar behaviour as that of at the QPTP λC1 . The minimum
λm at the vicinity of the additional QPTP of the curve changes as the increasing system size
(the inset of figure 8), and tends as

λm − λc ∼ N−1.78712.



7384 L Zhang and P Tong

Figure 7. The finite-size scaling is performed for the case of logarithmatic divergence at the
vicinity of λC1 for the period-two chain. The concurrence, considered as a function of the system
size and the coupling constant, is a function of N1/ν(λ − λm) only. All the data from N = 240
up to N = 1000 collapse onto a single curve. The critical exponent is ν = 1. The inset shows the
divergence of the value at the minimum as the system size increases, where γ = 0.2

Figure 8. The derivative of the NNC at the vicinity of λC2 . On increasing the system size, the
position of the minimum λm changes and tends as N−1.78712, where N = 60, 120, 240, 480, from
dowm to up, respectively.

The value ∂λC(1) at the second point λm logarithmically diverges with increasing system size
as

∂λC(1)|λm = 0.02048 ln N + const,

which can clearly be shown in the inset of figure 9. Taking into account the distance of the
minimum of ∂λC(1) of the period-two chain from the additional QPTP, it is possible to make
all the data for different N collapse approximately onto a single curve (figure 9), and the critical
exponent also is ν = 1.
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Figure 9. The finite-size scaling is performed for the case of logarithmatic divergence at the
vicinity of λC2 for the period-two chain. All the data from N = 240 up to N = 1000 collapse
onto a single curve. The inset shows the divergence of the value at the minimum as the system size
increases, where γ = 0.2.

Figure 10. The NNC of the period-three XY chain. In this case we choose N = 120, the dotted,
dotted-dashed and solid lines correspond to γ = 0.1, 0.2, 0.3, respectively.

From the above discussion, we can see that the behaviours of the entanglement at the
vicinity of both two critical points for the period-two XY chain are similar as that of uniform
chain, and belong to the same universality class.

4.2. The period-three chains

For the period-three anisotropic XY spin chain, we choose λ3i = λ3i+1 = λ, λ3i+2 = βλ. As
same as that of period-two case, it is found that there exists a critical value of γc, which is a
function of β. For any 0 < γ < 1, there is a QPTP, and for γ < γc there are two additional
QPTPs [13]. This is also due to the three-spin cluster. By the same method as that in
section 4.1, we calculate the concurrence of the period-three XY chain, from which we can
study the behaviour of the entanglement of this case. Figures 10 and 11 give the typical
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Figure 11. The derivative of the NNC for the period-three XY chain. In this case we choose
N = 120, the dotted, dotted-dashed and solid lines correspond to γ = 0.1, 0.2, 0.3, respectively.

Figure 12. The derivative of the concurrence of the period-three chain at the vicinity of
the three critical points. The solid, dashed, dotted and dotted-dashed curves correspond to
N = 60, 120, 240 and 480, respectively. With the increase in the system size, the position of
the minimum or maximum λm changes and tends to λc as Nα , from first to third critical point
α = −1.71708,−1.67754 and −2.15696, respectively, where γ = 0.2.

numerical results for β = 0.5. For β = 0.5, the γc is equal to 0.246 570 463 568 771. In
figure 11, we give the derivative of the concurrence of this case, which clearly shows the
critical points.

The period-three case has the similar finite-size scaling law at every critical point as the
period-two case, which we can easily see from figures 12 and 13. From figure 13, we can see
that the critical exponents at all the three critical points are all the same, ν = 1. So all the
critical points belong to the same universality class.

5. Discussion and conclusion

By using the concept of concurrence the entanglement of periodic anisotropic XY chains in a
transverse field is studied numerically. We find that the derivative of the NNC in the vicinity
of all the critical points for uniform (T = 1), period-two (T = 2) and period-three (T = 3)

chains have a similar scaling law, that is, it satisfies the same universality class. For all three
cases, the minimum λm of the curve at every critical point changes with the increasing system
size and tends as

λm − λc ∼ Nα.
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Figure 13. The finite-size scaling is performed for the case of logarithmatic divergence for the
period-three chain. At every critical point all the data from N = 120 up to N = 480 collapse
onto a single curve. The inset shows the divergence of the value at the minimum or maximum
as the system size increases, ∂λC(1) changes and tends as β ln N , from first to third critical point
β = −1.46844, 0.08108 and −0.02047, respectively, where γ = 0.2.

Table 1. The index of α at every quantum critical point, γ = 0.2.

αλC1
αλC2

αλC3

T = 1 −1.793 35 – –
T = 2 −1.720 29 −1.787 12 –
T = 3 −1.717 08 −1.677 45 −2.15696

Table 2. The index of κ at every quantum critical point, γ = 0.2.

κλC1
κλC2

κλC3

T = 1 −0.305 04 – –
T = 2 −1.245 09 0.020 48 –
T = 3 −1.468 44 0.081 08 −0.020 47

And the value ∂λC(1) at the point λm logarithmically diverges with increasing system size as

∂λC(1)|λm = κ ln N + const.

where α and κ are the functions of γ and β. The typical indexes α and β for γ = 0.2 and
β = 0.5 are given in tables 1 and 2.

Taking into account the distance of the minimum or maximum of ∂λC(1) of the three cases
from the critical point, it is possible to make all the data for different N collapse approximately
onto a single curve in the vicinity of every critical point, respectively. For every critical point,
the critical exponent ν = 1, so all the critical points of periodic anisotropic XY chains belong
to the same universality class.
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